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Abstract
Purpose – The purpose of this paper is to focus on the cost-effective and environmentally sustainable
operation of thermal power systems to allocate optimum active power generation resultant for a feasible
solution in diverse load patterns using the grey wolf optimization (GWO) algorithm.
Design/methodology/approach – The economic dispatch problem is formulated as a bi-objective
optimization subjected to several operational and practical constraints. A normalized price penalty factor
approach is used to convert these objectives into a single one. The GWO algorithm is adopted as an
optimization tool in which the exploration and exploitation process in search space is carried through
encircling, hunting and attacking.
Findings – A linear interpolated price penalty model is developed based on simple analytical geometry
equations that perfectly blend two non-commensurable objectives. The desired GWO algorithm reports a new
optimum thermal generation schedule for a feasible solution for different operational strategies. These are
better than the earlier reports regarding solution quality.
Practical implications – The proposed method seems to be a promising optimization tool for the utilities,
thereby modifying their operating strategies to generate electricity at minimum energy cost and pollution
levels. Thus, a strategic balance is derived among economic development, energy cost and environmental
sustainability.
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Originality/value – A single optimization tool is used in both quadratic and non-convex cost
characteristics thermal modal. The GWO algorithm has discovered the best, cost-effective and
environmentally sustainable generation dispatch.

Keywords Optimal control, Numerical analysis, Multiobjective optimization,
Design optimization methodology, Diverse load pattern, Economic emission sustainable dispatch (EESD),
Grey wolf optimizer, Linear interpolated price penalty model, Metaheuristic optimization

Paper type Research paper

Nomenclature
Ns = number of thermal units;
T = total number of the scheduling period in

“hour”;
tk = subinterval duration in “hour”;
F = total generation cost ($/h);
E = total amount of ER (lb/h);
ai ($/h), bi ($/MWh), ci ($/MW2h) = coefficients of the cost curve of ith thermal

unit;
di ($/h), gi (rad/MW) = valve point effect coefficient of ith thermal unit;
ai(lb/h), b i(lb/MWh), g i(lb/MW2h), h i(lb/h), d i(1/MW) = emission curve coefficients of ith thermal plant;
Psi = generation of the ith thermal unit in MW;
Pmin
si ; Pmax

si = minimum and maximum generation limit of
ith thermal unit in MW;

PD = total power demand in MW;
PL = total network loss in MW;
Bmn, Bm0, B00 = loss coefficients;
Pm, k, Pn, k = power generation of the mth and nth index

of plants in MW;
hk = linear interpolated price penalty factor at kth

interval $/lb;
PL
sj = PU

sj lower and upper bound of the jth prohib-
ited operating zone in MW;

ND = number of the prohibited discharge zone;
URi, DRi = upper and down ramp limit of the ith ther-

mal plant in MW/h;
D
!

= position vector of each hunter from any
other hunters;

X
!

prey = position vector of the prey;
X
!

wolf = position vector of the grey wolf;
t = current iteration;
A
!

; C
!

= coefficient vectors;
a! = acceleration vector;
r!1; r!2 = random vectors in [0, 1]; and
iter max = maximum iteration.

1. Introduction
1.1 Background of study
The power sector is pivotal in fueling all other sectors to function and grow through a
constant and reliable electricity supply. At the same time, rapid urbanization and
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industrialization demand electricity additionally. In a developing country like India, the
increasing demand is governed by coal-based thermal plants. Hence, logically, to reduce the
gap between the rising demand and limited supply of power, the country must establish new
and more power plants or improve the existing one’s operation. The optimum system
operational setting concerns the economy of operating, system security and utilization of
energy resources. Numerous research studies have analyzed thermal plants’ optimal
operation considering either single or multiple objectives under static and dynamic
environments. The single objective optimization aims to minimize the total operating cost of
active power generation to meet the demand while satisfying various constraints and
transmission loss. A large turbine has multiple steam valves; therefore, the valve point effect
is included in the fuel cost (FC), contributing to non-convexity in the cost function. In
contrast, the multiobjective operational problem intends to optimize both the FC and
emission release (ER) simultaneously. Various classical, metaheuristic and hybrid
optimization algorithms that have ascertained solutions for economic and combined
economic emission operation problems are briefly discussed in this context.

1.2 Role of metaheuristic and hybrid algorithms in solving cost-effective dispatch
Usually, a cost-effective dispatch (CED) problem has been solved by using many classical
methods. A Hopfield neural network approach is used in this category to minimize total FC
(Naser et al., 2005). The enhanced augmented Lagrange Hopfield network has been
exercised to find optimal solutions corresponding to the chosen fuel types (Dieu and
Ongsakul, 2008). A backtracking search algorithm is proposed to find the most elegant
solution within a short computation period. However, the valve point loading effect and
prohibited operating zones have been included (Modiri-Delshad et al., 2016). An improved
chicken swarm optimization has been adopted for saving many FCs. The non-linearity of
power generation units’ cost characteristics and inequality constraints have suitably been
handled (Li et al., 2018). Spea (2020) has applied a newly developed crow search algorithm
(CSA) to perceive excellent convergence characteristics, and results confirm the robustness
and effectiveness of solving practical economic load dispatch (ELD) problems.

In the optimization environment hybridizing, two algorithms have one global, and
another local search property is getting familiar. A particle swarm optimization (PSO) has
integrated with local random search (Selvakumar and Thanushkodi, 2007), a genetic
algorithm, pattern search and sequential quadratic programming (SQP) techniques are
unified (Alsumait et al., 2010), differential evolution (DE) with PSO (Parouha and Das, 2016)
and DE through sine cosine algorithm (Babar et al., 2020). Thus, the exploration capability
has been enhanced and achieved significant improvement in convergence time.

1.3 Environmental impact and solution for multiobjective optimization
Environmental sustainability needs to optimize both the generation cost and the cost of
controlling emissions from the thermal unit operation for ecological sustainability. Some of
the research works that have emphasized the gist of emission control in thermal power
plants by the optimum allocation of the generation are summarized as follows: a radial basis
function neural network (Kulkarni et al., 2002), DE (Mandal and Chakraborty, 2018) and PSO
(Pao-La-Or et al., 2010). A multiobjective DE (MODE) algorithm is exercised to solve
economic, environmental dispatch in which a Pareto-based approach is introduced to
implement the selection of the best individuals (Basu, 2011). Combined economic and
emission dispatch (CEED) aims to optimize the bi-objectives simultaneously using the
gravitational search algorithm (GSA) for optimum generation scheduling (Güvenç et al.,
2012). Rizk-Allah et al. (2018) presented a parallel hurricane optimization algorithm (PHOA)
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to quickly optimize the economic and emission objectives to reach Pareto optimal solutions.
Rezaie et al. (2018) used a chaotic improved harmony search algorithm (CIHSA) to solve the
CEED.

Matthew and Nicodemus have hybridized the artificial bee colony algorithm (ABC)
with PSO to optimize CEED simultaneously. Zhang et al. (2013) have formulated an
enhanced multiobjective cultural algorithm (EMOCA) by combining cultural algorithm
and PSO to compromise FC and ER. Liang et al. (2018) have exercised the bat algorithm,
and Bhargava and Yadav (2020) have blended the DE-CSA to obtain a trade-off between
FC and ER.

1.4 Dynamic combined economic emission dispatch and its solution
Non-dominated sorting genetic algorithm-II (NSGA-II) (Basu, 2008), improved bacterial
foraging algorithm (IBFA) (Pandit et al., 2012), MODE algorithm (Jiang et al., 2013), hybrid
DE and DE-SQP and hybrid PSO-SQP (Elaiw et al., 2013), chemical reaction optimization
(CRO) algorithm (Roy and Bhui, 2015), new modified non-dominated sorting genetic
algorithm-II (MNSGA-II) (Zhu et al., 2016) and new enhanced harmony search (NEHS)
algorithm (Li et al., 2019) were attempted to improve the computational efficiency and offer
the best compromise solution for dynamic EESD.

1.5 Role of grey wolf optimizer as emerging optimization tool
Grey wolf optimizer (GWO) is a newly emerged optimization algorithm developed by
Mirjalili et al., 2014 and detailed in Section 3. The GWO algorithm is tested with
standard functions and indicates superior exploration and exploitation characteristics
than other swarm intelligence techniques. Further, the GWO has successfully applied
for solving various engineering optimization problems such as parameter estimation in
surface waves (Song et al., 2015), tuning approach for fuzzy control-based servo
systems with reduced parametric sensitivity (Precup et al., 2017), economic load
dispatch problems (Pradhan et al., 2016) and dynamic economic load dispatch problem
(Sattar et al., 2019).

1.6 Research gap and challenge
There are several approaches to blend the conflicting objectives in the multiobjective
optimization environment. Particularly in the thermal power system’s (TPS) combined
economic emission operation, the weighted aggregation is used widely. The weight
factor of an objective is chosen in proportion to the relative importance of the aim. It is
observed that the weighted sum approach has given equal preference for both the FC
and ER and optimized upon the satisfaction of equality constraints; apart from that, the
trade-off procedure is not directly connected with load demand. The modified price
penalty factor approach is exercised consistently to obtain the compromised solution in
CEED.

In contrast with the weighted aggregation method, the modified price penalty factor
approach is directly related to the load demand, but maximum capacity is often greater than
demand. Hence, this procedure yields the approximate price penalty factor, and the solution
might be hypothetically in global optima. A set of non-dominated solutions is obtained for
CEED popularly using the multiobjective evolutionary algorithms (MOEA) with sorting
techniques and determining the Pareto optimal fronts. It is observed that the MOEA has
obtained non-dominated solutions, which are not directly related to load demand. The
relation between FC and ER release of thermal plant operation is highly conflicting, and
balancing the same is a real challenge.
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1.7 Highlights and organization of the paper
In this paper, an accurate linear interpolated price penalty model is developed based on
simple analytical geometry, an equation that blends two non-commensurable objectives
perfectly. A solution repair strategy is adopted to satisfy power balance constraints.
Moreover, most of the swarm intelligent techniques used to solve optimization problems
cannot control the leader over the entire period. Therefore, the emerging GWO is aimed to
apply for solving economic environmentally sustainable dispatch. The GWO algorithm has
the following versatile properties inherently:

� self-organization;
� natural leadership hierarchy;
� support in decision-making;
� fitness of the potential solution is the average of the first three best solution; and
� few control parameters.

Additionally, GWO’s control parameters are turned to search with the more global solution
and linearly reach a steady and perfect local value.

This paper is organized into six sections. Section 2 describes all thermal scheduling
problems, whereas Section 3 briefs the GWO algorithm. Section 4 deals with application of a
GWO algorithm for finding an optimal generation schedule. The numerical simulation
results of various case studies have been presented and compared in Section 5. Finally, the
conclusion and possible future work are summarized and suggested in Section 6.

2. Problem formulation
The optimum generation schedule of the utility is a complex combinatorial optimization
problem that aims to supply a demand for affordable costs. Generally, linear, quadratic and
cubic cost functions (CCFs) have been used in the revenue analysis. Though the CCF is
legitimate, cost analysts crave the quadratic cost function (QCF) because the solution
procedure of CCF starts with a hypothetical initial value. In contrast, the QCF involves a
straightforward approach (Vali, 2014). Therefore, the optimum operation of the thermal
entity has been established with QCF realistically.

2.1 State-of-the-art dispatch models
In the power sector, the thermal power plant takes an overwhelming portion of the
entire generation. It causes gaseous emission and air pollution. Hence, the optimum
generation schedule considers two objective functions: the total FC and the ER.
Therefore, combined economic emission dispatch (ED) must carry to attain the trade-off
between FC and ER. For this purpose, various dispatch models are developed based on
input–output characteristics using a simple recursive procedure (Mandal and
Chakraborty, 2018; Basu, 2008).

2.1.1 Cost-effective dispatch. This dispatch has intended to minimize FC alone. Hence, the
cost function optimized over a scheduling period under a dynamic load environment is
mathematically defined in (1). In which, the scheduling period is restricted into one for static
load pattern as follows:

MinimizeF ¼
XT
k¼1

XNs

i¼1

tk fi;k Psi;k
� �� �

(1)

Grey wolf
optimizer



At this point, each thermal plant’s FC characteristic is composed of one or more
quadratic segments as a function of the active power generation and is represented
by (2):

fi;k Psi;k
� � ¼ ai þ biPsi;k þ ciP2

si;k (2)

Practically, the thermal power plant facilitates multi-valve steam turbines for flexible
operation. Then, the valve point loading effect is designated as sinusoidal function and
superposition with quadratic cost characteristics. Therefore, the cost characteristic becomes
non-convex and is defined by (3):

MinimizeF ¼
XT
k¼1

XNs

i¼1

tk ai þ biPsi;k þ ciP2
si;k þ

����disin gi Pmin
si � Psi;k

� �n o����
" #

(3)

2.1.2 Emission dispatch. The reduction of ER associated with thermal power generation
is a paramount process from environmental conservation. Therefore, the thermal
plant’s ER to be minimized over a scheduling period under a dynamic load pattern has
mathematically defined in (4). Wherein, the scheduling period is limited to one for the
static load as follows;

MinimizeE ¼
XT
k¼1

XNs

i¼1

tk ei;k Psi;k
� �� �

(4)

At this juncture, the thermal unit’s emission supplements the usual cost function and is
described as the sum of a quadratic function in (5):

ei;k Psi;k
� � ¼ ai þ b iPsi;k þ g iP

2
si;k (5)

The realistic operation is mathematically approximated to a QCF combined with an
exponential function in (6):

MinimizeE ¼
XT
k¼1

XNs

i¼1

tk ai þ b iPsi;k þ g iP
2
si;k þ h iexp d iPsi;k

� �h i
(6)

2.1.3 Combined economic emission dispatch. The optimum generation schedule with
absolute minimum FC is not anymore the only criterion. Additionally, environmental
considerations have become one of the major management concerns. Therefore, the problem
is formulated as a multiobjective optimization and described as follows:

� Static load pattern:

Minimize
XNs

i¼1

fi;k Psi;k
� �� �

; ei;k Psi;k
� �� �	 


(7)

� Dynamic load pattern:
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Minimize
XT
k¼1

XNs

i¼1

tk fi;k Psi;k
� �� �

; ei;k Psi;k
� �� �	 


(8)

2.2 System constraints
CEED is intended to minimize the operating cost of the thermal units with reduced ER
through an optimal generation schedule. Therefore, the constraints imposed on the optimal
operation of the TPS, such as active power balance, generation limits, prohibited operating
zone and ramp rate limits, are discussed in this section (Mandal and Chakraborty, 2018;
Jiang et al., 2013).

2.2.1 Power balance. It is an equality constraint and states that the algebraic sum of the
optimal active power generation of thermal units, load demand and transmission loss at any
interval should be equal to zero as follows:

XNs

i¼1

Ps;ik � PD;k � PL;k ¼ 0; k 2 T (9)

The following redefined loss formula gives the transmission power loss in terms of the
coefficient (Bmn):

PL;k ¼
XNs

m¼1

XNs

n¼1

Pm;kBmnPn;k

þ
XNs

m¼1

Bm;0Pm;k þ B00 ; k 2 T

(10)

2.2.2 Power generation limits. It is an inequality constraint, and the active power generation
of each thermal unit is between its upper and lower operating region as follows:

Pmin
s i #Ps i #Pmax

s i i ¼ 1; 2; 3 . . .NS (11)

2.2.3 Prohibited operating zone. The thermal units’ operations have been restricted for a
specific region is formulated as prohibited operating zone (POZ) constraint and is given as
follows:

Pmin
sj #Psj;k#PL

sj;1

PU
sj;m�1#Psj;k#PL

sj;m ;m ¼ 2; 3; ::;NDj

PU
sj;m#Psj;k#Pmax

sj ;m ¼ NDj

8>>><
>>>: (12)

2.2.4 Ramp rate limit. The sudden rise and fall of the ith thermal unit have been expelled is
represented as ramp rate limit (RRL) by (13):

Psi;k � Psi;k�1#URi ; if generation increases

Psi;k�1 � Psi;k#DRi ; if generation decreases

(
(13)
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2.3 Proposed dispatch model
In the CEED, the optimization is formulated as a multiobjective problem with conflict and
non-commensurable objectives. It transformed into a single objective optimization problem
by using an efficient approach, which blends the emission with the typical FC’s and is
detailed in this section.

2.3.1 Modified price penalty factor. Usually, the bi-objective of CEED is handled using a
modified price penalty factor approach detailed as follows. Generally, the price penalty
factor has defined as the ratio between the maximum FC and the maximum emission of the
corresponding generator. The computation procedure is as follows (Mandal and
Chakraborty, 2018; Moorthy et al., 2015; Moorthy et al., 2015):

Step 1. The average full-load FC (fav), i.e. FC per unit of power when the entity is at its
total capacity, has been computed as follows:

fav ¼
F Pmax

si

� �
Pmax
si

(14)

Step 2. The average emission (eav) of each thermal unit at its maximum output has been
calculated as follows:

eav ¼
E Pmax

si

� �
Pmax
si

(15)

Step 3.The ratio between fav and eavwas determined as follows, and it is called hmax:

hmax ¼ fav
eav

(16)

Step 4.According to hmax, the thermal units have ranked in ascending order.
Step 5. Then, each unit’s corresponding full-load capacity is added one at a time until

it
X

Pmax
s;i � PD;k

� �
has been discerned.

Step 6. In Step 5, the price penalty factor (hmax) corresponding to the last unit is used to
trade-off two conflict objectives.

In this procedure, the maximum capacity of thermal units is often higher than demand; it
yields an approximate value. Hence, an accurate model is necessary to determine the no-
inferior solution, and this drawback has been rectified by incorporating a simple
mathematical technique with the usual procedure.

2.3.2 Linear interpolation. Linear interpolation is a mathematical technique to enhance
the process of finding a function [f1(x)] that takes on specified values (x) at specified points
(D). Figure 1 explains the generalized analytical geometry procedure that has been used to
derive a function that takes on specified values at precise locations. The mathematical linear
interpolation model is given by (17):

f1 xð Þ ¼ f xoð Þ þ f x1ð Þ � f xoð Þ
x1 � xo

� �
* x� xoð Þ (17)

2.3.3 Linear interpolated economic environmentally sustainable dispatch. Let Ps1 is the
maximum capacity of a unit at that moment by adding the same cause sum–total exceeds
the load demand PDk, and its corresponding price penalty factor is h1. The maximum
capacity Pso is the predecessor, and the associated price penalty is ho. Then, the normalized
price penalty factor can be determined using (18):
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hk ¼ ho þ h1 � ho
Ps1 � Pso

� �
* PDk � Pso

so� �
(18)

Now, the two objective functions are combined using hk; then, the objective function of the
EESD problem is defined as follows:

Minimize F Psi;k
� � þ hk*E Psi;k

� �	 

(19)

3. Grey wolf optimizer modeling
3.1 Mathematical model
Mirjalili (2014) has developed the GWO algorithm inspired by the governance structure and
foraging method of grey wolves in nature. Grey wolves are segmented as alpha (a), beta (b ),
delta (d ) or omega (v ) in their population; the alpha is most dominant, whereas deltas and
omegas control the remaining wolves. The three pertinent attitudes of grey wolves are
encircling, hunting and assaulting prey, and these are mathematically derived as an
optimization algorithm. Generally, the alpha wolf presides over the hunting in association with
beta and delta wolves. Therefore, three of the best candidate solutions are designated as alpha,
beta and delta wolves during the iteration, whereas the remaining wolves are termed as omega
and keep posted consequently. This behavior is mathematicallymodeled as follows:

X
!

t þ 1ð Þ ¼ X
!

1 tð Þ þ X
!

2 tð Þ þ X
!

3 tð Þ
3

(20)

The position vector of the grey wolf for the next iteration is given by (21):

X
!

1 ¼ X
!

alpha � A1
! � D!alpha

X
!

2 ¼ X
!

beta � A2
! � D!beta

X
!

3 ¼ X
!

delta � A3
! � D!delta

9>>=
>>; (21)

The position vector of each hunter from any other hunters and is specified by (22):

Figure 1.
Linear interpolation

A

B

C

D

E

( )1f x( )f x

( )0f x

( )1f x

( ) ( )1,f x f x

( )1f x

x
0x 1xx
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D
!

alpha ¼ j C1
! � X!alpha � X

!j
D
!

beta ¼ j C1
! � X!beta � X

!j
D
!

delta ¼ j C1
! � X!delta � X

!j

9>>>=
>>>; (22)

While indicating wolves’ movement to assault the prey, the coefficient vectors “A” in (21)
and “C” in (22) play an essential role in mutating the potential neighbors and computing
using (23) and (24), respectively (Kadali et al., 2018) as follows:

A
!¼ 2 a!� r1!� a! (23)

C
!¼ 2r2

! (24)

Significantly, the magnitude of vector “A” decides the convergence tendency of GWO. If it
satisfies (25), the hunter toward the prey; otherwise, it diverges from the victim if the
measure meets (26), and hopefully, a fitter prey has found:

jA!j# 1 (25)

jA!j � 1 (26)

3.2 Strategic balance
To provide an excellent strategic balance between exploration and exploitation,
approaching the prey decreases from high value 2 to 0 linearly throughout iterations.
Hence, vector “A” fluctuates randomly, ranging from �2a to 2a, and at the same time,
vector “C” contains a random value in [0, 2]. It provides weight to the hunter for
emphasizing or deemphasizing the position in (22). Therefore, half of the iterations are
devoted to exploration in (26), and the rest to exploitation in (25). This mechanism
assists GWO to provide exquisite exploration, local minima avoidance and exploitation
simultaneously.

4. Implementation of grey wolf optimizer for economic emission sustainable
dispatch
The GWO’s control parameters setting and the strategy used to evade premature
convergence while optimizing the TPS’s generation schedule for minimum FC considering
the environmental aspect are detailed.

4.1 Initialization of wolves and structure of solutions
Step 1. Read the system data and initialize GWO parameters such as search agents pack
size, the maximum allowable iterations (Iter max) and the value of the vector (a, A and C)
using (23) and (24).

Step 2: The thermal unit’s active power generation is a decision variable, and it
represents the wolves’ position to be evolved. These wolves have been generated randomly
based on the pack’s size using themathematical expression (27) as follows:
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Pg;i ¼ rand* Pmax
gi � Pmin

gi

� �
þ Pmin

gi (27)

Step 3: Thus, the wolves’ position is represented as an array for a solution of the EESD, and
then, the initial position of the candidate solution (Xo) is structured as follows:

Xo ¼ P1
g1 � � � PSP

g1 P1
g2 � � � PSP

g2 :: � � � ::P1
gi � � � PSP

gi . . . P1
gN � � � PSP

gN

h i
(28)

4.2 Evaluation of fitness
Step 1.The objective function is computed using (29) for the wolves’ initial location:

Minimize f P1
g1

� �
: : :f PSP

g1

� �
f P1

g2

� �
: : :f PSP

g2

� ��
: : :f P1

gi

� �
: : :f PSP

gi

� �
f P1

gN

� �
: : :f PSP

gN

� �o (29)

Step 2. An augmented objective function (AOF) is derived using (30) to handle the equality
constraint violation. The calculated objective value is inflated with the absolute value in
breach of equality constraint violation by multiplying a high valued scalar multiplier as
follows:

AOF ¼ objective þ 1000*
����XN
i¼1

Pgi � PD þ PLð Þ
����

0
@

1
A (30)

Step 3. The fitness value of all individuals of the current candidate solution matrix (Xo) is
calculated using (31):

fitnessi ¼ AOFf g (31)

4.3 Modifying agent position for the optimal solution
Step 1. The fitness of ith individuals has better knowledge about the potential location of
prey. Therefore, the first three best (minimum) solutions have been categorized as alpha,
beta and delta wolves, respectively, and oblige the other wolves (omega) in the pack. It is
represented using (32) for further process as follows:

Palpha
g ¼ f 1 Pg

� � ¼ First Minimum

PBeta
g ¼ f 2 Pg

� � ¼ SecondMinimum

PDelta
g ¼ f 3 Pg

� � ¼ ThirdMinimum

8>>><
>>>: (32)

Step 2. The position of the ith agent should be updated using (20). Each search agent’s
location represents a potential solution comprising an active power generation of the EESD.
Each agent’s new site may violate allowable ranges, and it is limited to the respective
boundary.
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4.4 Fitness re-estimation and termination criterion
Step 1.With the new position of each control variable, the AOF is calculated using (24), and
the global solution is identified using (25).

Step 2.Update the wolves’ values and vectors (a,A and C).
Step 3. If Iter< Iter max, the position of the wolves is modified using (26). Otherwise, the

GWO terminates.

4.5 Constraints handling
The efficient constraints handling strategy detailed here is the successful critical application
of the proposed GWO algorithm for dealing with the EESD problem.

4.5.1 Power balance constraint. It was handled effectively without depriving the
computational effort of the GWO algorithm, and the step-by-step procedure is described as
follows:

Step 1. Ndwas chosen as a dependent thermal unit.
Step 2. Its generation at the kth interval (i.e. Pgd, k) was computed using (33):

BddP2
g d;k þ 2

XN�1ð Þ

m¼1

Bd;mPm;k � 1

0
@

1
APg d;k

þ
XN�1ð Þ

m¼1

XN�1ð Þ

n

Pm;kBmnPn;k þ
XN�1ð Þ

m¼1

Bm;0Pm;k

0
@

�
XN�1ð Þ

m¼1
m 6¼d

Pm;k þ B00 þ PD;k

1
CA ¼ 0 ; k 2 T

(33)

Step 3.The positive root was considered a generation of a dependent thermal unit (Nd).
Step 4. If the dependent generation is not satisfied, (11) at the initial stage itself, repeat

installation of (N�1) units as far as it meets the operating region.
Step 5: If the dependent generation is unsatisfied, (11) the mutated set of peers is

abandoned afterwards. The procedure was applied in its earlier solution as far as it meets
the operating region.

4.5.2 Inequality constraint. If the newly generated decision variable violets, it is an
available operating range and is handled appropriately. If any power generation is less than
the minimum level, it is fixed to the minimum value. Similarly, if it is higher than the
maximum level, it is assigned its upper value as follows:

Pgi;k ¼
Pmin
g;i if Pgi;k < Pmin

g;i

Pmax
g;i if Pgi;k > Pmax

g;i

i 2 Ng ; k 2 T

8>><
>>: (34)

4.5.3 Prohibited operating zones. Considering POZs of thermal plants, the generation limit
has been managed using (35) as follows:
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Pg;i ¼
PL
g;m rand# 0:5

PU
g;m rand > 0:5

m ¼ 2; 3; ::NDi

8>><
>>: (35)

4.5.4 Ramp rate limit. The operating limits of thermal units with RRL can be handled as
follows:

Prmax
gi;k ¼ min Pmax

gi ; Pgi;k�1 þ URi
� �n o

Prmin
gi;k ¼ max Pmin

gi ; Pgi;k�1 � DRi
� �n o

Prmin
gi;k #Pgi;k#Prmax

gi;k

9>>>>=
>>>>;

(36)

4.6 Computational time complexity of grey wolf optimizer
The time complexity (TC) of the GWO to take the EESD problem is computed based on the
pseudo code and implementation procedure. It comprises four phases, and each
computational phase time is expressed as follows (Moorthy et al., 2015):

(1) Initialization phase (IP): There are two nested loops; one iterates N time (wolves’
size), and the other iterates with d (dimensionality of the control variable) as
follows:

TC IPð Þ ¼ O N*dð Þ

(2) GWO algorithm phase (GAP): It comprises GWO operator, i.e. encircling and
attacking prey and social hierarchy. It has aWhile loop with a single For loop in
it. The While loop iterates at most maximum cycle times, and the For loop
iterates N times in each iteration as follows:

TC GAPð Þ ¼ O Max_cycle*Nð Þ þ O Max_cycle*Lð Þ

As a greedy selection mechanism selects the three best solutions, L is equal toN. Then,

TC GAPð Þ ¼ O 2* Max_cycle*Nð Þð Þ

(3) Objective function computational phase (OFCP): The objective function is
computed for each iteration’s d control variable as follows:

TC OFCPð Þ ¼ O dð Þ

(4) Solution repair phase (SRP): The solution obtained for d control variables is
involved as follows:

TC OFCPð Þ ¼ O dð Þ

Therefore, the overall TC for finding the optimal solution for EESD is as follows:

Grey wolf
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Overall TC ¼ O 2* Max_cycle*N2
� �

*d3
� �

5. Simulation and results
5.1 Description of the test system
The GWO is programmed in MATLAB 8.1 environment and simulated on the Intel Core i5
processor personal computer. This study considers two test systems (TS), and the first
system embodies 10 generating units encompassing quadratic and non-convex cost
characteristics. The load demand is set into 2,000MW, and network loss is let into a goal
(Mandal and Chakraborty, 2018). In the second TS, the unit records of TS-I are customized,
and the load demand was scheduled 24 h with an hour interval (Pandit et al., 2012). The
numerical results have been demonstrated in two scenarios: static dispatch, whereas the
second is dynamic dispatch.

5.2 Parameters setting
The control parameters of the GWO algorithm have been adopted as that of Mirjalili (2014)
as follows:

5.3 Cost-effective perspective
The profitable operation speculates the objective of sharing the demand of a power system
among the various generation units in such a way as to minimize the FC of the TPS,
satisfying the multiple constraints. The efficacy of GWO for solving the CED has been
explored by exempting and containing the valve point loading effect on FC characteristics
(Kadali et al., 2020). Figure 2 shows the best FC and worst ER associated with the optimal
generation to meet the scheduled load demand. It is made aware that the best FC is
$111,140.8317/h and $111,355.0265/h for with and without valve point effect subjected to
static load demand. The corresponding generation schedule is found out about 2,078.9714
and 2,079.0130MW. Further, it is perceived that the total-generation schedule includes
transmission loss, is evolved as 41,062.3270 and 41,065.6206MW for with and without valve
point-effect subjected to static load demand. The corresponding minimum FC is
$2,444,072.4952 and $2,462,593.6473, 290,749.1277, respectively.

5.4 Environmentally sustainable aspect
With the concern over environmental protection, an attempt is pursued to optimize the
generation schedule of thermal units in such a way as to minimize ER, satisfying the
operational and practical constraints. The control parameter of the GWO algorithm is
suitably turned in terms of a system parameter and has been simulated for minimum
pollutant ER for a static load and a time-varying load profile. The static dispatch is
optimized 2,066.0756 and 2,066.7114MW of total generation for without and with valve
point effect on the cost curve. At the same time, dynamic dispatch is optimized 41,079.6177

No. of GWO colony size: 30 (population)
Max. iteration: 500
Dimension: 10
Best_score: Alpha_score
Best_position: Destination_position
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and 41,085.0294MW of total generation. Figure 3 shows the tolerable ER 3,792.9450 and
3,879.5721 lb/h for static dispatch without and with a valve point effect. In comparison, the
unobjectionable ER is 269,781.9103 and 290,737.8059 lb during dynamic dispatch without
and with valve point effect. In this context, it is fathomed that the optimal generation
schedule corresponding to the minimum ER fully satisfies its inequality and power balance
constraints adequately while supplying both static and dynamic loads.

5.5 Economic environmentally sustainable dispatch
The total FC’s and ER’s that GWO has obtained in CED and ED were compared pictorially
in Figures 4 and 5 to provide conscience about the operation TPS. It is inferred that the FC is
minimal in the case of economic aspects than ER. In the same manner, ER is minimal in the

Figure 2.
Best fuel cost

(a) (b)
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Notes: (a) Static dispatch; (b) dynamic dispatch

Figure 3.
Minimum emission

release
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Notes: (a) Static load; (b) dynamic load
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case of emission aspects than FC. It is proved that economic and emission objectives are
conflicting; therefore, both objectives have been optimized simultaneously with static and
dynamic load demand.

5.5.1 Static generation schedule for a compromised solution. There are many practical
approaches to obtain trade-offs among the non-commensurable objective functions in a
multiobjective optimization environment. Particularly in this framework, a linear
interpolated price penalty factor approach has been adopted to minimize both conflicting
objective functions simultaneously. In this context, the corresponding price penalty factor
for a particular scheme is 34.7858 and $35.5284/lb with and without valve point,
respectively. These factors are accurately combined the FC and ER and help provided for
optimizing simultaneously. As the objective of EESD is to minimize both the FC and ER
simultaneously, the generating schedule is optimized not only between its lower and upper
generation limit and also to satisfy the equality constraints. In line with the objective, GWO
has tuned for the optimum generation schedule without and with valve point loading and is
tabulated in Table 1.

Figure 5.
Comparison of
minimum emission
release

(a) (b)

Notes: (a) Static demand; (b) dynamic demand

Figure 4.
Comparison of best
fuel cost

(a) (b)

Notes: (a) Static dispatch; (b) dynamic dispatch
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5.5.2 Dynamic generation schedule for a compromised solution. In an inconstant loading
environment, a typical task is to optimally dispatch the total load demand to the committed
generating units to obtain a compromised point between FC and ER. The normalized price
penalty factors corresponding to the non-inferior solution are given in Table 2, facilitating a
balance among these non-commensurable objective functions. Subsequently, the optimum

Table 2.
Interpolated price
penalty factor for

compromised
dynamic dispatch

Interval (h) PD (MW) hk ($/lb)

1 5,448 6.5539
2 5,776 6.9492
3 5,664 7.2653
4 5,624 7.5815
5 5,928 7.7395
6 6,064 7.9744
7 6,088 8.0071
8 5,856 8.0398
9 5,480 9.8736

10 5,464 11.3397
11 5,728 12.4077
12 5,536 13.4823
13 5,400 11.3397
14 5,828 9.8736
15 3,928 8.0398
16 3,840 7.8976
17 3,784 7.7395
18 3,608 7.9744
19 3,584 8.0398
20 3,544 11.3397
21 3,528 9.8736
22 3,552 7.9744
23 3,688 7.4234
24 3,840 7.1072

Table 1.
Compromised

optimal generation
schedule for static

dispatch

Generation (MW)
Demand 2,000 MW

Without valve point With valve point

Units P1 42.1821 54.7979
P2 58.5484 70.8587
P3 77.7854 87.7660
P4 82.3326 85.3548
P5 149.4509 160.0000
P6 175.4625 203.1300
P7 257.5695 246.2489
P8 325.4139 253.5066
P9 373.5234 384.6749
P10 470.0000 466.0000

Total generation (MW) 2,012.2687 2,012.3378
Losses (MW) 12.2687 12.3378
Fuel cost ($/h) 1,09,804.1078 1,11,049.8047
Emission release (lb/h) 3,789.1193 3,811.0333
Iterations 500

Grey wolf
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hourly generation schedule, total generation and line loss that the GWO algorithm has
obtained correspond to the compromised FC $2,517,985.1046 with tolerable ER 301,302.7248
lb over an entire scheduling time was recorded in Table 3 with valve point loading effect.
Numerical values show that power balance, minimum and maximum generation limits are
satisfied utterly.

5.6 Competency with other methods
To elevate the proposed algorithm’s proficiency in finding compromised dispatch, the
feasible solution that has been ascertained by GWO and other methods for solving the
multiobjective EESD is compared in this section. The compromised FC and ER are
presented in Table 4 for static load, and it is found to be $111,049.8047/h and 3,811.0333 lb/h
using the GWO algorithm best-compromised solution compared with the earlier techniques.
To examine the tendency and property of the GWO algorithm while compromising FC and
ER, a set of 20 non-dominated solutions obtained by GWO, EMOCA (Zhang et al., 2013),
MODE (Basu, 2011), NSGA-II (Zhang et al., 2013), PDE (Basu, 2011), SPEA (Basu, 2011) and
PHOA (Rizk-Allah et al., 2018) are compared in Figure 6. It reveals that the proposed
algorithm’s solutions are distributed widely and have the best diversity on the Pareto
optimal front compared with other methods.

In the dynamic load case, the compromised FC in $ and ER in lb has been compared with
other methods in Table 5, whereas the non-dominated solutions are depicted in Figure 7.
From the comparison, it can be stated that the GWO method has explored a good quality
solution than other methods. At the same time, the GWO algorithm compromises the FC of
$3,872.1046 higher than modified adaptive multiobjective differential evolution algorithm
(MAMODE) (Jiang et al., 2013) and ER 6,181.8632 lb more than NEHS (Li et al., 2019).
Alternatively, it can be interpreted that the MAMODE (Jiang et al., 2013) attempts to reduce
the ER further an amount 1,439.2752 lb, and NEHS (Li et al., 2019) strives to minimize the FC
of $15,212.0943. Consequently, the FC and ER compromised byMAMODE (Jiang et al., 2013)
and NEHS (Li et al., 2019), respectively, seem higher than the GWO algorithm has
ascertained. It can be evident from the figure that the optimal front proposed by NEHS (Li
et al., 2019) looks local optima because the actual non-dominated front compromises FC and
ER in a higher ratio than the GWO algorithm.

5.7 Solution quality improvements
The effectiveness of the proposed method is investigated in terms of solution quality against
other competitors. For understanding the ability of GWO in determining EESD, the FC
saving and ER attenuated while obtaining trade-offs among them are illustrated in Figure 8
for TS-I and Figure 9 for TS-II. It is perceived from the figures that the GWO algorithm has
retrenched FC and alleviated ER apropos of all competitor algorithms.

Figure 9 is developed based on the comprehensive data that have been derived from
Table 5 for further analysis. It is noticed that the GWO has saved the FC and diminished ER
about NSGA-II (Basu, 2008) and real-coded genetic algorithm (RCGA) (Basu, 2008).
Alternatively, it saves more FC than modified real-coded genetic algorithm (MRGA) (Zhu
et al., 2016) and NEHS (Li et al., 2019), whereas reduced remarkable quantity ER relating to
CRO (Roy and Bhui, 2015), DE-SQP (Elaiw et al., 2013), PSO-SQP (Elaiw et al., 2013),
MAMODE (Jiang et al., 2013) and MNSGA-II (Zhu et al., 2016). If MRGA (Zhu et al., 2016)
and NEHS (Li et al., 2019) algorithms try to minimize FC equal to the value obtained by
GWO, the corresponding ER might be higher than what GWO has achieved. Likewise, CRO
(Roy and Bhui, 2015), DE-SQP (Elaiw et al., 2013), PSO-SQP (Elaiw et al., 2013), MAMODE
(Jiang et al., 2013) and MNSGA-II (Zhu et al., 2016) have attempted to minimize ER. Further,
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corresponding FC’s might be higher than what the GWO has obtained. Therefore, it can be
stated that the proposed linear interpolated price penalty approach has been incorporated
into the GWO for getting the trade-off value between two objectives correctly correlated to
the load demand.

5.8 Statistical measure
5.8.1 Descriptive statistics. In recent decades, many evolutionary and swarm intelligence
algorithms have been used in the CEED framework, and they outperform each other
numerically. In this situation, the use of standard statistical analysis provides help to
investigate the performance of a selected algorithm that would confirm whether a proposed
method offers a significant enhancement or not. The statistical analysis data is collected
from the trade-off curve, which has attained over 20 independent trial solutions. The
analysis results in terms of best, average and worst total FC, minimum, mean andmaximum
total ERwere presented in Table 6 for TS-I and Table 7 for TS-II.

Table 4.
Comparison of
compromised FC and
ER of TS-I supplying
static load

Methods Fuel cost ($/h) Emission (lb/h)

PDE (Basu, 2011) 113,510.0000 4,111.4000
EMOCA (Zhang et al., 2013) 113,445.0000 4,113.9800
MODE (Basu, 2011) 113,484.0000 4,124.9000
NSGAII (Zhang et al., 2013) 113,539.0000 4,130.2000
SPEA (Basu, 2011) 113,520.0000 4,109.1000
GSA (Güvenç et al., 2012) 113,490.0000 4,111.4000
CIHSA (Rezaie et al., 2018) 116,390.2783 3,932.4473
ABCPSO (Manteaw and Odero, 2012) 113,420.0000 4,120.1000
DE (Basu, 2011) 113,480.0000 4,124.9000
PHOA (Rizk-Allah et al., 2018) 111,960.0000 3,824.6645
GWO 111,049.8047 3,811.0333

Figure 6.
Comparison of
optimal front for
compromised static
dispatch
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Moreover, the associated standard deviation of each attribute is listed in all tables. It is a more
informative measure of the statistical dispersion of a data set. It is observed that the GWO has
found the best FC and minimum ER with a lesser standard deviation than other methods; this
indicates that these attributes are clustered tightly around the average value. Simultaneously,
different algorithms have a higher standard deviation than one another; it is not necessarily a
bad thing, but it reflects a large variability from their average value. Therefore, it is evident that
the GWO algorithm is a good competitor in finding the best solution.

5.8.2 Wilcoxon signed-rank test. It is a non-parametric statistical hypothesis test used to
test the null hypothesis of the two samples from the same population against an alternative
hypothesis. It is analogous to the paired t-test in non-parametric statistical procedures; thus,
it is a pair-wise test that purports to find significant deviations between two sample means,
i.e. the behavior of two algorithms. The test data are compromised FC and ER obtained by

Table 5.
Comparison of the

compromised FC and
ER of TS-II

supplying dynamic
load

Methods Fuel cost ($) Emission (lb)

CRO (Roy and Bhui, 2015) 2,517,821.0349 301,941.9173
HCRO (Roy and Bhui, 2015) 2,517,076.3921 299,065.5049
DE-SQP (Elaiw et al., 2013) 2,468,800.0000 315,640.0000
PSO-SQP (Elaiw et al., 2013) 2,470,100.0000 315,070.0000
MAMODE (Jiang et al., 2013) 2,514,113.0000 302,742.0000
IBFA (Pandit et al., 2012) 2,517,116.7460 299,036.7059
NSGA-II (Basu, 2008) 2,522,600.0000 309,940.0000
RCGA (Basu, 2008) 2,525,100.0000 312,460.0000
MRGA (Zhu et al., 2016) 2,555,180.8800 299,140.8600
MNSGA-II (Zhu et al., 2016) 2,517,711.4300 308,674.1500
NEHS (Li et al., 2019) 2,533,197.1989 295,120.8616
GWO 2,517,985.1046 301,302.7248

Figure 7.
Comparison of trade-

off solution for
dynamic dispatch
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GWO and other contestant algorithms for 20 independent trials. The Wilcoxon signed-rank
test is performed at the significance level a = 0.05, and experimental results were presented
in Table 8 for static load demand and Table 9 for dynamic load pattern.

The test statics comprise the ranks (Rþ and R�), the standardized test statistic (z), p-
values in the asymptotic sig. (two-tailed). It shows that the p-values computed for all the
pair-wise comparisons concerning GWO are 0.000 at the significance level a = 0.05 or less
than 0.05. It is the most substantial evidence to reject the null hypothesis H0, which means
that the GWO shows a significant improvement to ascertain the best FC and minimum ER
over other algorithms, such as EMOCA (Zhang et al., 2013), MODE (Basu, 2011), NSGA-II
(Zhang et al., 2013), PDE (Basu, 2011), SPEA (Basu, 2011), PHOA (Rizk-Allah et al., 2018),

Figure 8.
Competency of GWO
for compromised
static dispatch

Figure 9.
Competency of GWO
for compromised
dynamic dispatch
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GSA (Güvenç et al., 2012), CIHSA (Rezaie et al., 2018), ABCPSO (Manteaw and Odero, 2012)
and DE (Basu, 2011) for static load demand. At the same time, NEHS (Li et al., 2019), NSGA-
II (Basu, 2008), MNSGA-II (Zhu et al., 2016), MAMODE (Jiang et al., 2013), CRO (Roy and
Bhui, 2015), HCRO (Roy and Bhui, 2015), DE-SQP (Elaiw et al., 2013), PSO-SQP (Elaiw et al.,
2013), IBFA (Pandit et al., 2012), RCGA (Basu, 2008) and MRGA (Zhu et al., 2016) for
dynamic load demand.

6. Conclusion
It is summarized that EESD is framed as a non-linear optimization problem. The objective
functions are the FC and ER of thermal units that included the valve point loading effect in

Table 8.
Wilcoxon signed-
rank test statistics

for compromised FC
and ER of TS-I

supplying static load

Test statisticsa

Pair-wise comparison

FC ($/h) ER (lb/h)
Sum of
the rank

Z

Asymp. sig.
(two-tailed)

Sum of
the rank

Z

Asymp. sig.
(two-tailed)

Rþ R� p-value Rþ R� p-value

GWO-EMOCA (Zhang et al., 2013) 0 20 �3.920b 0.000 0 20a �3.921b 0.000
GWO-MODE (Basu, 2011) 0 20 �3.920b 0.000 0 20a �3.921b 0.000
GWO-NSGAII (Zhang et al., 2013) 0 20 �3.920b 0.000 0 20a �3.920b 0.000
GWO-PDE (Basu, 2011) 0 20 �3.920b 0.000 0 20a �3.920b 0.000
GWO-SPEA (Basu, 2011) 0 20 �3.920b 0.000 0 20a �3.920b 0.000
GWO-PHOA (Rizk-Allah et al., 2018) 2 18 �2.576b 0.010 2 18 �2.613b 0.009
GWO-GSA (Güvenç et al., 2012) 1 19 �3.883b 0.000 0 20 �3.920b 0.000
GWO-CIHSA (Rezaie et al., 2018) 0 20 �3.920b 0.000 0 20 �3.921b 0.000
GWO-ABCPSO (Manteaw and Odero, 2012) 0 20 �3.920b 0.000 3 17 �3.621b 0.000
GWO-DE (Basu, 2011) 0 20 �3.920b 0.000 3 17 �3.510b 0.000

Notes: aWilcoxon signed-ranks test; bbased on positive ranks

Table 9.
Wilcoxon signed-
rank test statistics

for compromised FC
and ER of TS-II

supplying dynamic
load

Test statisticsa

Pair-wise comparison

FC ($) ER (lb)
Sum of
the rank

Z

Asymp. sig.
(two-tailed)

Sum of
the rank

Z

Asymp. sig.
(two-tailed)

Rþ R� p-value Rþ R� p-value

GWO-NEHS (Li et al., 2019) 5 15 �2.875b 0.004 0 20 �3.920b 0.000
GWO-NSGA-II (Basu, 2008) 2 18 �2.539b 0.011 1 19 �3.845b 0.000
GWO-MNSGA-II (Zhu et al., 2016) 16 4 �2.091c 0.037 0 20 �3.921b 0.000
GWO-MAMODE (Jiang et al., 2013) 18 2 �2.576c 0.010 4 16 �3.360b 0.001
GWO-CRO (Roy and Bhui, 2015) 5 15 �3.173b 0.002 5 15 �3.323b 0.001
GWO-HCRO (Roy and Bhui, 2015) 5 15 �3.099b 0.002 4 16 �3.397b 0.001
GWO-DE-SQP (Elaiw et al., 2013) 20 0 �3.920c 0.000 0 20 �3.921b 0.000
GWO-PSO-SQP (Elaiw et al., 2013) 20 0 �3.920c 0.000 1 19 �3.883b 0.000
GWO-IBFA (Pandit et al., 2012) 5 15 �3.099b 0.002 17 3 �2.501c 0.012
GWO-RCGA (Basu, 2008) 1 19 �3.845b 0.000 2 18 �3.808b 0.000
GWO-MRGA (Zhu et al., 2016) 0 20 �3.920b 0.000 17 3 �2.355c 0.019

Notes: aWilcoxon signed-ranks test; bbased on positive ranks; cbased on negative ranks
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the cost function and modeled both the static and dynamic load environments. The problem
formulation has considered the power balance equation and lower and upper generation
limits; moreover, POZ and up/down RRLs for realistic operation. It is found that the FC and
ER are conflicting. Therefore, an efficient analytical geometry procedure is incorporated into
the price penalty factor, and a linear interpolated price penalty approach is developed, which
has blended the non-commensurable objectives perfectly in correlation with load demand.
The power balance equation has been handled effectively using a solution repair strategy,
whereas POZ and RRL are appropriately handled during the iteration. A well-known two
TSs are considered in this study.

A proficient metaheuristic GWO algorithm is exercised as an optimization tool. Though
constraints handling mechanisms fluctuate computational time, the GWO discovers global
optimum solutions because of self-organization and natural leadership hierarchy. The
performance of the GWO algorithm in minimizing stated objectives are compared as follows
with well-known optimization techniques that have already proven their ability in solving
EESD:

� It has offered better saving of FC.
� In terms of environmental aspects, it has been remarkably reduced pollutant

emission.
� To a great extent, GWO has obtained an effective trade-off between FC and ER.

Thus, it affords good FC saving with the massive reduction in ER while EESD.

Further, the numerical results provide the following pertinent acquaintance on scheming
TPS. The valve point loading increases the power generation; thus, the FC increases than
without valve point loading in all operations, which seems to be practical value. Finally, it is
concluded that the GWO provides the best solution for economic environmentally
sustainable generation schedule and is very useful to the system planners. This way, it
alters their working methodologies to produce electrical vitality at affordable prices with
cleanliness.
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